readabilite: clean up code
parent
c628ee802c
commit
c6d3a0eb53
|
@ -47,12 +47,6 @@ def count_content(node):
|
|||
return count_words(node.text_content()) + len(node.findall('.//img'))
|
||||
|
||||
|
||||
def percentile(N, P):
|
||||
# https://stackoverflow.com/a/7464107
|
||||
n = max(int(round(P * len(N) + 0.5)), 2)
|
||||
return N[n-2]
|
||||
|
||||
|
||||
class_bad = ['comment', 'community', 'extra', 'foot',
|
||||
'sponsor', 'pagination', 'pager', 'tweet', 'twitter', 'com-', 'masthead',
|
||||
'media', 'meta', 'related', 'shopping', 'tags', 'tool', 'author', 'about',
|
||||
|
@ -198,8 +192,8 @@ def clean_node(node, keep_threshold=None):
|
|||
parent.remove(node)
|
||||
return
|
||||
|
||||
if keep_threshold is not None and get_score(node) >= keep_threshold:
|
||||
# high score, so keep
|
||||
if keep_threshold is not None and get_score(node) >= keep_threshold:
|
||||
return
|
||||
|
||||
gdparent = parent.getparent()
|
||||
|
@ -300,44 +294,39 @@ def lowest_common_ancestor(nodeA, nodeB, max_depth=None):
|
|||
return nodeA # should always find one tho, at least <html/>, but needed for max_depth
|
||||
|
||||
|
||||
def rank_grades(grades):
|
||||
# largest score to smallest
|
||||
return sorted(grades.items(), key=lambda x: x[1], reverse=True)
|
||||
|
||||
|
||||
def get_best_node(ranked_grades):
|
||||
" To pick the best (raw) node. Another function will clean it "
|
||||
|
||||
if len(ranked_grades) == 1:
|
||||
return ranked_grades[0]
|
||||
|
||||
lowest = lowest_common_ancestor(ranked_grades[0][0], ranked_grades[1][0], 3)
|
||||
|
||||
return lowest
|
||||
|
||||
|
||||
def get_article(data, url=None, encoding_in=None, encoding_out='unicode', debug=False, threshold=5):
|
||||
" Input a raw html string, returns a raw html string of the article "
|
||||
|
||||
html = parse(data, encoding_in)
|
||||
score_all(html)
|
||||
scores = rank_grades(get_all_scores(html))
|
||||
|
||||
if not len(scores) or scores[0][1] < threshold:
|
||||
# rank all nodes (largest to smallest)
|
||||
ranked_nodes = sorted(html.iter(), key=lambda x: get_score(x), reverse=True)
|
||||
|
||||
# minimum threshold
|
||||
if not len(ranked_nodes) or get_score(ranked_nodes[0]) < threshold:
|
||||
return None
|
||||
|
||||
best = get_best_node(scores)
|
||||
# take common ancestor or the two highest rated nodes
|
||||
if len(ranked_nodes) > 1:
|
||||
best = lowest_common_ancestor(ranked_nodes[0], ranked_nodes[1], 3)
|
||||
|
||||
else:
|
||||
best = ranked_nodes[0]
|
||||
|
||||
# clean up
|
||||
if not debug:
|
||||
keep_threshold = percentile([x[1] for x in scores], 0.1)
|
||||
keep_threshold = get_score(ranked_nodes[0]) * 3/4
|
||||
clean_root(best, keep_threshold)
|
||||
|
||||
# check for spammy content (links only)
|
||||
wc = count_words(best.text_content())
|
||||
wca = count_words(' '.join([x.text_content() for x in best.findall('.//a')]))
|
||||
|
||||
if not debug and (wc - wca < 50 or float(wca) / wc > 0.3):
|
||||
return None
|
||||
|
||||
# fix urls
|
||||
if url:
|
||||
best.make_links_absolute(url)
|
||||
|
||||
|
|
Loading…
Reference in New Issue